CS 188: Artificial Intelligence Spring 2010

Lecture 24: Perceptrons and More! 4/22/2010

Pieter Abbeel - UC Berkeley
Slides adapted from Dan Klein

Announcements

- W7 due tonight [this is your last written for the semester!]
- Project 5 out tonight --- Classification!

Announcements (2)

- Contest logistics
- Up and running!
- Tournaments every night
- Final tournament: We will use submissions received by Thursday May 6, 11 pm.
- Contest extra credit through bonus points on final exam [all based on final ranking]
- 0.5pt for beating Staff
- 0.5 pt for beating Fa09-TeamA (top 5), Fa09-TeamB (top 10), and Fa09-TeamC (top 20) from last semester [total of 1.5 pts to be earned]
- 1 pt for being $3^{\text {rd }}$
- 2pts for being $2^{\text {nd }}$
- 3pts for being $1^{\text {st }}$

Where are we and what's left?

- So far:
- Search
- CSPs
- Adversarial search
- MDPs and RL
- Bayes nets, probabilistic inference
- Machine learning - Classification
- Today: Machine Learning part III:
\rightarrow. kNN and kernels
- Tuesday: Applications in Robotics
- Thursday: Applications in Vision and Language + Conclusion + Where to learn more

Classification

$x \quad f(x) \quad y$

Classification overview

- Naïve Bayes:
- Builds a model training data
- Gives prediction probabilities
- Strong assumptions about feature independence
- One pass through data (counting) \longleftarrow
- Perceptron:
- Makes less assumptions about data
- Mistake-driven learning
- Multiple passes through data (prediction)
- Often more accurate
g SVM:
- Properties similar to perceptron
- Convex optimization formulation

Nearest-Neighbor:

- Non-parametric: more expressive with more training data
\{- Kernels
- Efficient way to make linear learning architectures into nonlinear ones

Case-Based Reasoning

- Similarity for classification
- Case-based reasoning
- Predict an instance's label using similar instances
- Nearest-neighbor classification
- 1-NN. copy the label of the most similar data point
- K-NN let the k nearest neighbors vote (have to devise a weighting scheme)
- Key issue: how to define similarity $\longleftarrow \sim$
- Trade-off:
- Small k gives relevant neighbors
- Large k gives smoother functions
- Sound familiar?
- [Demo]

Parametric / Non-parametric

- Parametric models: prion
- Fixed set of parameters
- More data means better settings
- Non-parametric models:
- Complexity of the classifier increases with data
- Better in the limit, often worse in the non-limit
- (K)NN is non-parametric

Truth

Nearest-Neighbor Classification ${ }^{\frac{1}{n}}$

- Nearest neighbor for digits:
- Take new image
- Compare to all training images
- Assign based on closest example

- Encoding: image is vector of intensities:
$\rightarrow \quad 1=\left\langle\begin{array}{lllllllll} & 0.0 & 0.0 & 0.3 & 0.8 & 0.7 & 0.1 & \ldots & 0.0\end{array}\right\rangle$
- What's the similarity function?
- Dot product of two images vectors?

$$
\operatorname{sim}\left(x, x^{\prime}\right)=x \cdot x^{\prime}=\sum_{i} x_{i} x_{i}^{\prime}
$$

- Usually normalize vectors so $\|x\|=1$
- $\min =0$ (when?), $\max =1$ (when?)

Basic Similarity

- Many similarities based on feature dot products:

$$
\operatorname{sim}\left(x, x^{\prime}\right)=f(x) \cdot f\left(x^{\prime}\right)=\sum_{i} f_{i}(x) f_{i}\left(x^{\prime}\right)
$$

- If features are just the pixels:

$$
\operatorname{sim}\left(x, x^{\prime}\right)=x \cdot x^{\prime}=\sum_{i} x_{i} x_{i}^{\prime}
$$

- Note: not all similarities are of this form

Invariant Metrics

- Better distances use knowledge about vision
- Invariant metrics:
- Similarities are invariant under certain transformations
- Rotation, scaling, translation, stroke-thickness...
- E.g:

- $16 \times 16=256$ pixels; a point in 256-dim space
- Small similarity in R^{256} (why?)
- Variety of invariant metrics in literature
- Viable alternative: transform training examples such that training set includes all variations

Classification overview

- Naïve Bayes
- Perceptron
- SVM
- Nearest-Neighbor
- Kernels

A Tale of Two Approaches ...

- Nearest neighbor-like approaches
- Can use fancy similarity functions
- Don’t actually get to do explicit learning
- Perceptron-like approaches
- Explicit training to reduce empirical error
- Can't use fancy similarity, only linear
- Or can they? Let's find out!

Perceptron Weights

- What is the final value of a weight w_{y} of a perceptron?
- Can it be any real vector?
- No! It's built by adding up inputs.

$$
w_{y}=0+\underbrace{f\left(x_{1}\right)}-f\left(x_{5}\right)+\begin{aligned}
& \alpha_{2, y}=0 \\
& \alpha_{4, j}=0
\end{aligned}
$$

$$
\longrightarrow \underbrace{w_{y}}=\sum_{i} \underbrace{\alpha_{i, y}} f\left(x_{i}\right)
$$

Can reconstruct weight vectors (the primal representation)
from update counts (the dual representation)
$\alpha_{y}=\left\langle\begin{array}{llll}\alpha_{1, y} & \alpha_{2, y} & \ldots & \left.\alpha_{n, y}\right\rangle\end{array} \quad \approx\right.$

$(a+b) \cdot c$
 Dual Perceptron $=a c+b c$

- How to classify a new example x ?

$$
\begin{aligned}
\operatorname{score}(y, x) & =w_{y} \cdot f(x) \\
& =\left(\sum_{i} \alpha_{i, y} f\left(x_{i}\right)\right) \cdot f(x) \\
& =\sum_{i} \alpha_{i, y} \underbrace{\left(f\left(x_{i}\right) \cdot f(x)\right)}_{\text {inner product } 2 \text { kernel function }} \\
& =\sum_{i} \alpha_{i, y} \underbrace{K\left(x_{i}, x\right)}
\end{aligned}
$$

- If someone tells us the value of K for each pair of examples, never need to build the weight vectors!

Dual Perceptron

- Start with zero counts (alpha) ~ $\alpha_{y_{2}}$
- Pick up training instances one by onte
- Try to classify x_{n},
\qquad

$$
y=\arg \max _{y} \underbrace{\sum_{i} \alpha_{i, y} K\left(x_{i}, x_{n}\right)}
$$

- If correct, no change!
- If wrong: lower count of wrong class (for this instance), raise score of right class (for this instance)

$$
\begin{aligned}
\alpha_{y, n} & =\alpha_{y, n}-1 & & w_{y}=w_{y}-f\left(x_{n}\right) \\
\alpha_{y^{*}, n} & =\alpha_{y^{*}, n}+1 & & w_{y^{*}}=w_{y^{*}}+f\left(x_{n}\right)
\end{aligned}
$$

$\left\|x_{i}-x\right\|_{2}^{2}=\left(x_{i}-x\right)^{\top}\left(x_{i}-x\right)$
 Kernelized Perceptron $=x_{1}^{\top} x_{i}^{\left(c_{i}\right)}$

- If we had a black box (kernel) which told us the dot product of two examples x and y :
$=K\left(\mathrm{Ki}_{\mathrm{i}}\right.$, ki$)$
$-2 k\left(k_{i}, k\right)$
$+K(k, k)$
$\operatorname{score}(y, x)=w_{y} \cdot f(x)$

$$
=\sum_{i} \alpha_{i, y} K\left(x_{i}, x\right)
$$

- Like nearest neighbor - work with black-box similarities
- Downside: slow if many examples get nonzero alpha

- So far: a very strange way of doing a very simple calculation
- "Kernel trick": we can substitute any* similarity function in place of the dot product
- Lets us learn new kinds of hypothesis
* Fine print: if your kernel doesn't satisfy certain technical requirements, lots of proofs break. E.g. convergence, mistake bounds. In practice, illegal kernels sometimes work (but not always).

Non-Linear Separators

- Data that is linearly separable (with some noise) works out great:

- But what are we going to do if the dataset is just too hard?

- How about... mapping data to a higher-dimensional space:

Non-Linear Separators

- General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

Some Kernels

- Kernels implicitly map original vectors to higher dimensional spaces, take the dot product there, and hand the result back
- Linear kernel: $\quad K\left(x, x^{\prime}\right)=x \cdot x^{\prime}=\sum_{i} x_{i} x_{i}^{\prime}$

$$
\rightarrow \phi(x)=x
$$

- Quadratic kernel: $K\left(x, x^{\prime}\right)=\left(x \cdot x^{\prime}+1\right)^{2}$

For $x \in \Re^{3}$:

$$
=\sum_{i, j} \underbrace{x_{i} x_{j}} \underbrace{x_{i}^{\prime} x_{j}^{\prime}}+2 \sum_{i} x_{w} x_{i} x_{w}^{\prime}+\underbrace{1}_{w}
$$

$$
\left.\begin{array}{rl}
\phi(x) & =\left[\begin{array}{lllll}
x_{1} x_{1} & x_{1} x_{2} & x_{1} x_{3} & x_{2} x_{1} x_{2} x_{2} x_{2} x_{3} x_{3} x_{1} x_{3} x_{2} & x_{3} x_{3} \\
& \sqrt{2} x_{1} & \sqrt{2} x_{2} & \sqrt{2} x_{3} & 1
\end{array}\right] \\
& 28
\end{array}\right]
$$

Some Kernels (2)

For $x \in \Re^{3}$:

$$
K\left(x, x^{\prime}\right)=\underbrace{\left(x \cdot x^{\prime}+1\right)^{d}}_{\phi(x) \cdot \oint\left(x^{\prime}\right)}
$$

$\rightarrow \phi(x)=\left[\begin{array}{llllll}x_{1}^{d} & x_{2}^{d} & x_{3}^{d} \sqrt{d} x_{1}^{d-1} x_{2} & \sqrt{d} x_{1}^{d-1} x_{3} & \ldots & \sqrt{d} x_{1} \\ \sqrt{d} x_{2} & \sqrt{d} x_{3} & 1\end{array}\right]$

$$
\begin{aligned}
& n=3 \\
& d=1000
\end{aligned}\binom{(1003)}{1007}
$$

For $x \in \Re^{n}$ the d-order polynomial kernel's implicit feature space is $\binom{n+d}{d}$ dimensional.

By contrast, computing the kernel directly only requires $O(n)$ time.

Some Kernels (3)

- Kernels implicitly map original vectors to higher dimensional spaces, take the dot product there, and hand the result back
- Radial Basis Function (or Gaussian) Kernel: infinite dimensional representation
$\longrightarrow K\left(x, x^{\prime}\right)=\exp \left(-\left\|x-x^{\prime}\right\|^{2}\right)$
- Discrete kernels: e.g. string kernels
- Features: all possible strings up to some length
- To compute kernel: don't need to enumerate all substrings for each word, but only need to find strings appearing in both x and x'

Why Kernels?

- Can't you just add these features on your own (e.g. add all pairs of features instead of using the quadratic kernel)?
- Yes, in principle, just compute them
- No need to modify any algorithms
- But, number of features can get large (or infinite)
- Kernels let us compute with these features implicitly
- Example: implicit dot product in polynomial, Gaussian and string kernel takes much less space and time per dot product
- Of course, there's the cost for using the pure dual algorithms: you need to compute the similarity to every training datum

$$
\begin{gathered}
\text { " } K\left(x, x^{\prime}\right) \text { is a Merca band if } \exists \text { : } K\left(x_{1} x^{\prime}\right)=\phi(x) \cdot \phi\left(x^{\prime}\right) \\
\forall x, x^{\prime}
\end{gathered}
$$

Recap: Classification

- Classification systems:
- Supervised learning
- Make a prediction given evidence
- We've seen several methods for this
- Useful when you have labeled data
Outside of sure of 188:
masurewisod limy huck:,
semi-superised Coaming

Where are we and what's left?

- So far foundations: Search, CPs, Adversarial search, MDPs and RL, Bayes nets and probabilistic inference, Machine learning
- Tuesday: Applications in Robotics

- Thursday: Applications in Vision and Language + Conclusion + Where/How to learn more

